If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=14x=0
We move all terms to the left:
x^2-(14x)=0
a = 1; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·1·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*1}=\frac{28}{2} =14 $
| 4x+22+5x-8=180 | | 6(1+2x)=26+8x | | 4x+22+5x-8=189 | | 8b+3+-2b=-45 | | 6x+7+8x-17=180 | | 4(u+3)=-4(4u-1)+8u | | 4p^2-32p-5=0 | | -3(-x+5)-3x=3(x-5)-6 | | 9=–2v–v | | 8x+x^2=20 | | (x+3)(x-3)=6x-17 | | -7(y-4)=6y-37 | | 7u+45=-5(u+3) | | 5(y+2)-7y=-6 | | 2-(3x+1)+x=5x+7 | | 4v+6-2(-7v-1)=6(v-1) | | 5x×9=12 | | -8v+5(v-6)=-18 | | -4w-2=2(w-7) | | -3(2u-9)+3u=5(u+3) | | 13x+53=11x+51 | | -4.1-7z=36 | | -4v+77=-10v+37 | | 3y-(2y-6)=25 | | 4(u-9)=-8u-48 | | 4x+8+6x-5=32 | | 8s=3s+6 | | 3(w-5)-9=-2(-2w+4)-7w | | 2(2x-3)=3(2-5x) | | -7c-3=11 | | -12+6=3x+5x | | 5c+1+3c=17 |